
Vortex regions in a potential stream 735 

BIBLIOGRAPHY 

1. Batchelor G. K., Proposal concerning lamlnar wakes behind bluff bodies at 

large Reynolds numbers. J. Fluid Me&., Vol. 1, No. 3, 1956. 

0. Taganov G. I., On the theory of stationary separation zones Im. Akad, Nauk 

SSSR, MZhG, No. 5, 1968. 

3. Gol’dshtig M. A., Mathematical model of flow separation in an incompress- 

ible fluid. Dokl. Akad. Nauk SSSR, Vol. 147, No. 6. 1962. 

4. Shabat A.B., Two problems of splicing solutions of Dirichlet’s problem. 

(English translation) “Soviet Physics”, American Institute of Physics, 1963. 

5. Sadovskii V. S., Region of constant vorticity in a plane potential stream. Uch. 

zap. TsAGI, Vol. 1, No.4, 1970. 
6. Sadovskii V. S., On certain properties of v3rtex and potential flows bordering 

on a closed fluid streamline. Uch. zap. TsAGI, Vol. 2, No. 1, 1971. 

7. Taganov G. I., On the limit flow of a viscous fluid with stationary separation 

zones at H --, m.Uch. zap. TsAGI, Vol. 1, No. 3, 1970. 

8. Childress S., Solution of Euler’s equations containing finite eddies. Phys. 

Fluids, Vol. 9. No. 5, 1966. 
9. Polozhii G.N., Equations of Mathematical Physics. Vysshaia Shkola, Moscow, 

1964. 

Translated by J. J. D. 

ON THE APPROXIMATIONS AND BIFUEATIONS OF A DYNAMIC SYSTEM 

PMM Vol. 35, No. 5, 1971, pp. 780-796 

N. N. B AUTIN 

(Gorlrii) 

(Received May 18, 1971) 

By means of an example of a classical problem in flight dynamics we examine 

the influence of approximation on the structure of the partitioning of the phase 

space and of the parameter space of a dynamic system. For a qualitative inve 
stigation of dynamic systems we can use the transition from the original model 

to a simplified or piece-wise integrable one, by approximating the characteris- 
tics in the equations of motion. Here arises the important question of the adm- 
issible deviations of the approximating functions from the real characteristics 
for the preservation of the necessary closeness between the original and the app- 

roximating system The concept of necessary closeness is not unique and is de- 

termined by the aims of the investigation. For example, it can be understood 

as the requirement of retaining for the approximating system ths same phase 
space and parameter space partitioning structure as for the original system [ 1). 

In a general formulation the problem reduces to the question of preserving or 
losing bifurcations during the transition to the approximating system. The diff- 
iculties arisising here are connected with the fact that not all the bifurcations 

may be kept track of by regular methods, and furthermore, for “fused” 
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ap~o~mating systems (pie~w~e-a~lytic ones) them may arise new 9~s of 
bifurcations for which there is no complete classification as yet, Therefore, a 
Cornf~WMVe aXUdy)rsis of actual dynamic systems under different approximations 
is of intcr@st. Below we carry out such an analysis on the basis of an example 
of a classical problem in flight dynamics l.%J - 93. The choice of this problem 
was dictated by the fact that in the original system a wide collection of bifurc- 
ations is possible (all types of Mfurcations of the first degree of structural insta- 
bility are realined) and by the fact that we have succeeded in establishing srric- 
tly the parameter space ~d~o~g sm@uce both for the original system (which 
had not been done to this time) as well as for the ap~o~mating systems. Here 
diffkrentzes arise in the partftioning structure of the parameter space and of the 
phase space, ~rrn~~ing~ to evaluate the influence of the ap~o~matio~ on 
the ~~~o~g structure and to uncover, in particular, the important role play- 
ed by the “saddle index” [lo], The retention of a quantitative closeness of the 
ch~a~~~lcs did not prove to be obligatory for the preservation of the qualita- 
tive partitioning structure of the system’s phase and parameter spaces. The use 
of the saddle index in the qualitative investigation of “ftied” 3ysums is based 
on the possibility of carrying over the assertions ~n~rn~g the stability condit- 
lans for a separatrix lop and the conditious for the birth of limit cycles from it, 
to ~~na~~c systems, preserving the loop in whose composition the analytic 
saddle occurs. Theorems 44 - 49 in [103, with appropriate changes of formui- 
ations, remain valid for the systems mentioned because the method by which 
they were established carry over to these systems. 

1. We consider the system 

L&p/ dt = p - cos ip = P, ~/~=2P~~-~P-sin~)=~ (1) 

for the Datameter values f.~ 2 0, h > 1. In a cylindrical phase space (on the strip 
--a 6 9p < n, p 2 0 with edges identified) the equilibrium states are 

where 

0 
hpf f1+-1”‘-F 

b 3,4 = cos cpa+ = - 2 + p 

and the pIus sign before the square root corresponds to the p>int Oa.In the parameter 
space the poinra 0, and O1 merge on the curve 1 i- p2 - hs = 0 while the points 
O., and 0, on the straight line 1 = $ . System (1) has two equilibrium states above 

the curve 1+p2- Aa = 0 : 0, a saddle, and 0s an unstable node. Below the curve 
there are four singular points: O1,Us, 0, (a node or a focus) O4 (a saddle). The fusion 
of the +&qplar potnts is the simplest bifurcationof system (1). Other possible bifurcati- 
ens are connected with the change of stability of the eq~~b~urn state &,.with the bi- 

furcations of separatrices (sepwaerices go&q from a saddle to a saddle), and with the 
appearance of timit cycles from i&&y, from a separatrix loop, from a condensation 
of trajectorfes, and from the separatrix of a saddle-node singular point. All these bi- 
furcations may he traced for system (1). 

1.1. The eq~~brlum state 0s has pure imaginary roots of the characteristic equa- 
tion for points on the curve or zr (P,’ -+ QqpJ3 = 0, PIp’Qp’ - f)F'Qu' > r), where 
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for p and cp we should use the coordinates of point O,.The curve 08 =r 0 can be repre- 
sented by the equation 

h (1 - 2p2) c= 3p fl$- 

It starts at the point p = r/s, h= 1 and ends on the curve 1 f p2 - kg = 0 which 
it touches at the point B (T/ ‘/a,r/ ‘/&In passing through the curve ~3 = 0 in the dire- 
ction of increasing p the unstable focus becomes stable and from it there emerges an un- 
stable limit cycle The first Liapunov index for the points of the curve o, = 0 has the 
value 

1.2. Let us, trace the change in the qualitative structure and the bifurcations as the 
point in parameter space moves along the curve 1 -k IL”- A2 = 0. To the points on the 
curve there corresponds a composite singular point arising as a result of the fusion of 
0s and O,.This is a singular point of the saddle-node type for all points of the curve 

except the point p - 0, A = 1 for which three singular points are merged in the phase 
space, and the point B (a degenrate saddle-node). The qualitative pattern of the part- 
itioning of the phase space into trajectories is determined by the presence or absence of 
limit cycles girding the phase cylinder and by the location of the separatrices bounding 
the nodal region of the saddle-node singular point, Figure 1 shows the structures which 
are realized along the curve as the parameter p increases, 

Fig. 1. 

The pattern of the nhase-cylinder’s partitioning into trajectories is shown in F&l(I) 
for the point A (0, 1) There are no limit cycles (this is seen from the disposition of the 
contact curve of the system being considered and of the conservative system p = h = 

0). There are only two singular points: the saddle Oj and the composite singular point 

o,,, (ii, Jr, 0). The partitioning structure shown in Fig. 1 (II) is realized on the piece 
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AB of the curve. Two bifurcations are realized in passing from the point .~i to the 
points Of piece AB: (1) a singular point of the saddle-node type with an unstable nodal 
region is separated out from the comnosite singular point because on the pieceAB we 
have CT s4 nn (pu’ -I- QP’)M = (1 -2~s) /A > O;(Z) from Infinity there emerges a st- 
able I&nit Cycle because in the equation there appears the term--p and the point at 
infinity becomes unstable. A bifurcation takes place at point tl : the point becomes 
degenerate and the nodal region dksappoan. The external manifestation of this is the 
vanishing Of the quantity is.++ When passing through the point& along the Curve in 
the direction of increasing 11 the saddle-node singular point with an unstable nodal reg- 
ion turns into a saddle-node with a stable nodal region because the quantity crs4 changes 
sign and becomes negative. The qualitative phase space structure shown on Fig. 1 (111) 
exists on a certain piece of the curve, abutting point B from the right. 

In order to trace the subsequent bifurcations along the curve 1 + pz -iv” = (1 it is 
essential to determine the qualitative structure of the ~~tio~~g into trajectories for 
large p and 1,. We can show that for large lk and il the qualitative structure is as shown 
in Fig. 1 (V). The w -separatrix of the saddle-node has a negative slope everywhere. 
There are no limit cycles. P). Figure 1 represents the qualitative structures successively 
passing one to the other as the parameters increase along the Curve. Here, the o-sep- 
arat& of the saddle-node passes through the structurally unstable [noncoarse] positions 
shown in Fig.1 (III-IV) and 1 (IV-V). In Fig.1 (III-IV) the w -separatrix of the saddle- 
node proceeds to the saddle Oi. In Fig. 1 (IV-V) the c+ and o-separatrices of the saddle- 
node coincide, forming a closed contour girding the cylinder. As the lop originates 
the stable limit cycle shrinks to it (because for the saddle-node we have aw< 0 on the 
piece of the curve to the right of point B flO]). 

1 l 3. Let us trace the change in q~~~tive structures and the bifurcations as P incr- 
eases along a straight line Gorresponding to some fixed value of h from the interval 
1 < h < fi(the straight line is located below point B). The sequence of structures 
as p inazases is shown in Fig. 2. The pattern of the phase space partitioning into tra- 
jectories for p = 0 is shown in Fig, 2 (1). There are no limit cycles and only two sing 
ular points: Or is a saddle, 0, is an unstabie node. For a sufficiently smatl change in 
P the number and the nature of the singular points do not Change, but the phase space 

structure does change as a whole. The term -pp appears in the equation and the po- 
int at infinity becomes unstable. A stabIe limit Cycle emerges from infinity. This str- 
ucture is shown in Fig.2 (2). As the parameter /.k increases the point in the parameter 
space hits on the curve1 -+ ps- hs = 0 and from the condensation of the trajectories 
arises a Composite saddle-node singular point with an unstable nodal region shown in 
Fig. 2 (2-3x With a further increase of l.& the Composite Singular point Splits up into two 

simple ones: a Saddle and an unstable node (Fig. 2 (3)). 
The next bifurCation is traced as the point passes through the curve 0:) ~0; here. as 

P inCreases an unstable limit Cycle emerges from the equilibrium state. To the bifur- 
cation value of parameter p there corresponds the trajectory partitioning shown in Fig. 2 
(3-4) (the singular pint 0s is a composite focus), while to the values to the right of 
the Curve crs = O(n~t too far from the curve) there Corresponds the pattern shown in 
Fig. 2 (4). A limit Cycle appears around the stable focus. 

l ) The prOOf of this assertion has been given by N. A. Gubar’ (Appendix I). 
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Fig, 2. 

Subsequent bifurcations as p increases a&? bifurcations of separatrices, Let us trace 
these bifurcations. On the straight line 9, = arcsin h-l rclcated on the strip - x, n 
between points 0, and o. fthe points 0, and 0, merge on this straight line ff 1 + 
+ ps - A++ = 0) we note above the isocline of vertical slopes the points of intersection 
of the straight fine with the three separatrices of saddle 04 and with the a;-s@paratrix of 
saddle 0,. If the parameter p is taken sufficiently close to the curve ~JQ = 0, then in 
the order of growth of the caordinate p the points are distributed in the following order: 
PI on the 0.. separatrix of the saddle, Pa on the a- separawix of the saddle, leaving 

from the saddle to the left, P, on the ct-separatrix of saddle 0% and P, on the a;-sep- 
aratrix of the saddle, leaving from the saddle to the right. As the parameter p irmeas- 

es the equilibrium states 0s and Ct, diverge monotonically along a fixed tsocline of 
vertical slopes (CT& / ilp = -p3 (1 + p2 - h”)-‘fx < 0, 8q4;dp, = Pa (i + P*- 
- A2)-“g > 0), while th e vector fields on the two sides of the isocline turn M opposite 
directions: clockwise above and counterclockwise below. The points P,, Psand P, 
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.- 
2) Since the curve a, ~0 is situated above the straigbt line h > v ‘/s and the form- 

ation of the separatrix loop for some values of X can be realized for QI < 0, then for 
these vaiues of h the transition from a partitioning of type (6) in Fig. a to type (8). as 
p increases, takes place by the shrinking af a stable limit cycle to a separatrix loop 
girdiq the cylinder. Here a new structurelly unstable structure arises separating struct- 
ures (6) and (8). shown in Fig.2 (6-8). Fclr the structure (618), as also for the structure 
(6-7). the a-and o_septuatrices of saddle O1 form a loop girding the cylinder, but 

there is no stable limit cycle, 

For any h the structures (I) and (2) of Fig, 2 are realiized in the region f-/-p’- liB < 
<0,~-3r, f) Structure (8) of Fig. 2 is realized in the region (1 -!- A) I’ P < 1 The 
change of structure takes place as p varies in the interval between the curve 1 -l- u2- 

- x= = 0 and the straight line 1 + h - p = 0 ( jf?,2 - 1 < ~1 < h -5 1). 
The sets of points corresponding to the structurally unstable bifurcation patterns (4-S). 

(&6f, (6-7) and (6-6) in Fig, 2 form continuous curves{4.5)+(S.S), {6,?) and (6.8) in the 
ph -pIane. These curves have a positive slope. The latter follows from the fact that 

as the parameters p and h increase individually the vector field on separatrices going 
from saddle to saddle and not intersecting the contact curve (the isocline af vertical 
slope) turns in opposite directions. Only for a simultaneous increase or decrease of p 
and h the r&at&n of a vector field along saddle-to-saddle separatrices can be nonmon- 
otonic and nondestructive of the separatrices. The bifurcation curves f4.5) and j5.6) 
start and end on the lines h = 1 and 1 + ~4 - 71:! = 0.The curve{r,.5t does not leave the 
strip 1 ( h < f12 and ends at point B. The separatrix of the composite singular point 
in Fig. I (II-III) can be considered as a degeneracy of the separatrix of point ~9~ in Fig. 
2 (4-5) under a limit transition preserving the separatrix loop when the points 0% and 
0, approach, The curve {fi& ends at the point C (Fig. 31, At point C, as on the 

curve (5.6) the separatrix of saddle 0, goes into saddle Od {Fig. I (IZ-IV) and Fig. 2 

(5-6)). This is however impossible for any one point of any straight line Z = conet pass- 
ing above the point C .The curve { G.7} starts on the straight line h = I and ends on the 

curve 0, = 0. next it turns into the curve { 6.81 ending at point D of the curve 1 +!t2 - 
- is = O-At point U.as on the curves ffi.;Jand {G.H).the GC_ and o - separaaices of saddle 
OS form a loop. This is impossible for any one point of any straight line 2, = con& 

passing above the point D. The curves {4.,5}, {5.6}and fli.7) intersect at one point on the 

straight line h = 1. At this point a trajectory partitioning structure of a high order of 
structural instability is realized, it is shown in Fig.2 (4-5-O-7). The point(l/$ 3. t)j is 
a composite singular point.. An arbitrarily small variation of the parameters can lead 

to the structurally unstable structure (405J, (5-6) or (6-7; only from the structure (4-5- 
6-7). but because a variation of p destroys the loop, on the straight line 5= f there 
can exist anly a single pint with a structWe containing a separatrix loop, namely the 
point of int-ersection of the curves(4.5.) {3.6}and {G’.‘ii.The set of points corresponding 

to the bifurcation pattern (7-8) with the double semistable limit cycle in Fig Z forms 
a continuous curve (7 _?j] with a positive slope, The curve (‘i&f starts on the straight 
line i; == 1 and ends at the point of intersection of the clwesi6.7) and fti.dj. one being 
the continuation of the other, with the curve CT& = if (point E in Fig. 3% 

Figure 3 is a representation. not to scale, of the distribution of the bifurcation curves 
in the 1’3~ -plane for the case I_& > 0. h > 1 being considered (0). 

- 

(‘1 A diseibution of bifurcation curves has been given in @I, where the conclusions on 
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2, Let us consider system (1) for approximations by the saw-tooth functions 

The equilibrium states on the strip - rc & ‘p & x are: 0,(-*/s 7~, 0), 0, ('/,a~, O), 

O3 ((p3, fh), 04 ((~4, ~4)~ where 

L-f (A - PI 1-j-h J-r (h - PL) 1 --h 
(p3= z(lfp) 1 P3=-’ 

1-T-P 
‘Pa= 2(1-p) 9 p4= 1-p 

0, is a fused saddle, 0, is a fused unstable node, 0, is a node or a focus, OS is a 
saddle. In the parameter space the points 0, and O4 merge on the straight line h - 

--fl = 0 and the points 04 and 0,. on the straight line h = 1. 

Fig. 3. Fig. 4. 

The structure of the phase space partitioning for the point 
h=p=l. When h = l_~ = 1 the isoclines of vertical and horizontal slopes co- 

incide on the interval 0 < cp< l/*~t and a phase-space partitioning structure with a 
rest segment arises on the interval f.l < cp < l/,n. Integral curves on which the repr- 

esentative point moves on the interval0 < cp < l/snare exponential curves. The rest 

segment is p = 1 - 2Cirp (0 < 'p & I/& stable on the interval 0 < cp < l/s (n - 
- 1) and unstable on the interval i/,(n - I)<% < ‘/an. The integral curve p = 

= n-le”f-i-?~ is tangent to the rest segment’at the point (‘/a (n - l), x-‘)and when 

cp = 0 falls into the region above the maximum of the isocline of horizontal slopes 
(st-le”-l > 2) and goes off to infinity. There are no limit cycles. All trajectories go 
to the stable part of the rest segment. The pnase-space partitioning structure in the 

neighborhood of the rest segment is shown in Fig. 4. 

the boundary-curve partitioning structures and on the birth of a limit cycle from the 
separatrix loop of a saddle-node were obtained from a graphical construction of the 
separatrices by the method of isocllnes. 
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The structure of the partitioning on the straight line h = p. 

As h and p increase from the value h = p = 1 along a straight line the rest segment 
splits up and at its end points there arise the singular points: OS1 (0, 1). being fused 
from a focus and a saddle, and 0, (rlsx, 0). being a fused node (unstable). The iso- 

cline of horizontal slopes is located above the isodine of vertical slopes on the interval 

0 < cp < '/gc and the separatrix of saddle Or ending on the stable piece of the rest 

segment when h = ~1 = 1 turns into a trajectory winding into a limit cycle girding 

the cylinder (the point at infinity is unstable). A stable limit cycle emerges from the 

trajectory abutting the rest segment and from a piece of the rest segment. 
As h and p increase along a straight line the saddle-focus OS* turns into a saddle- 

node with a stable nodal region when p = (1 + 2v’L)/rt = p,*.For 1-1 close to f.~* 
both the o-separatrices of the fused saddle-node must leave the node 0s. There are no 

limit cycles for large 31. and p because the o-separatrix occurring at the saddle-node 

has a negative slope everywhere. The validity of this follows from the fact that if we 

take a point (rpa, rl,, > 1) on the w- separatrix, then for sufficiently large p the coord- 

inate q0 on the straight lineup = ‘pO is larger than the maximum of the isocline of hor- 

izontal slopes (X + 1) / y,because the vector field turns clockwise in the region p > 

> 1 as p increases along the straight line and here 11~ grows, while (h + 1) / p + 

3 1. 
The qualitative structures, successively passing one to the other as p and L increase 

along the straight line 3r = ~1, are equivalent to some of those shown in Fig, 1. For any 

jl from the interval0 < p < p* the phase-space partitioning structure is equivalent 

to that shown in Fig.1 (II-III), for p* < p < pi, in Fig. 1 (III),for 111 < II < ps , in 
Fig. 1 (IV). For p2 < in < oc the distribution of separatrices is shown in Fig. 1 (V). 

The structure of the partitioning on the halfline p = n (I - 1) + 

+ 1 > 1. AS h and p increase from the values i = p = 1 along a halfline. a piece 
of the isocline on the interval 0 <(p < ‘/,Jc turns around the point (‘/2(n - 1), n-l) 

and the rest point splits up and gives rise to three singular points: 0s ((pa, ps) a stable 

focus or node, 04 (1/2 (n - I), x-l) a saddle the directions of whose separatrices are 

determined by the equation n2k2 + 2n (1 + CL) k + 4 = 0 and 0, (1/23t, 0) a fu- 

sed node (unstable). As the parameters vary along a straight line the contact curve of 

the curves of the degenerate system (p = 1 = l)is p = x-1 and. consequently, al- 

ways passes through the saddle. The vector field in the region p > 1 turns clockwise 

as f_~ increases and, therefore, the o- separatrix going into the saddle along the direct- 
ion k <-2~@ cannot intersect the integral curve p=n-r ez-1-2o of the degenrate sys- 

tem, being tangent to the rest segment at just that point at which the saddle arises for 
p > 1 and going into the saddle along the direction k=-2n-l.The separatrix inter- 

sects the axis cp = 0 at the point p* > n-‘e”-l > 2 and enters the region above the 

maximum of the isocline of horizontal slopes. There are no limit cycles girding the 
cylinder for any values of h and p’ on the halfline being considered. The phase-space 
partitioning structure for all points of this halfline is the same and is equivalent to the 
one shown in Fig. 2 (8). 

Parameter-space partitioning into regions with different qual- 
itative phase-space structure. Let us observe the change of structures and 
the bifurcations as l.~ varies, for a fixed 3L = h, from the interval 1 < h < ki.When 
p z= 0 the qualitative phase-space partitioning pattern is equivalent to the one in 
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Fig. 2 (1). The point at infinity is stable. For CL in the interval 0 < i_t < A,, the qua- 
litative pattern is equivalent to the one in Fig, 2 (2). The point at intinity ts unstable. 
A stable llmit cycle appears from i5 When p = h, at the point (0.1) there appears a 
fused saddle-focus (if Al. < p*) or a fused saddle-node with a stable nodal region (if 
P > CL*). The qualitative pattern is equivalent to the one in Fig. 1 (II-III) or 1 (III), 
respectively. As l.t increases further the composite fused singular point splits up into 

simple ones: a saddle& ((~4, p ) d I an a stable focus (node OS ((pa, p3). The quaiitative 
pattern is equivalent to the one in Fig. 2 (5). Both the w- separatrices of saddle o4 go 

into the point 0s (an unstable node). For p > 3t (A - 1) + 1 one of the o-separatr- 

ices of saddle 0, goes off to infinity. The qualitative pattern is equivalent to the one 

in Fig. 2 (8). As P increases, two bifurcations of separatrices are realized between the 
lines h = i.& and i.r = n (h - I) + 1: for some l.r = lr (1) (ho)a separtrix arises going 

from saddle oI to saddle 0,) and for p = p,(?)(h,) ,> CL(‘) (A,) a separatrix loop girding 

the cylinder arises. 
The nature of the bifurcation as the separatrix loop arises and vanishes is determined 

by the sign of the saddle index 

The curve ~1 = 0 is tangent to the straight line 11 = z ()i - 1) i_ 1 at the point 
h = lo = 1 and is located to the right of it. To the left of the straight line the saddle 

index has a negative value for bifurcation values of the parameters. As 11 increases, 

as a separatrix loop arises the stable limit cycle shrinks to the loop. For a fixed h = 

= At from the interval i.~ < h < paonly one bifurcation is realized as I_L increases 

on the interval A, < ~1 < n (hi - 1) f 1: a separatrix loop girding the cylinder, 

to which the stable limit cycle shrinks, appears when $ = ~(‘3 (h,), For a fixed 

h = & > pa no changes take place in the qualitative structures as p varies on the 

interval & < 11 < ‘*3 The curves p = ~(1) (h)and p = ~(2) (A), corresponding to 

structurally unstable structures which are qualitatively equivalent to those in Fig. 2 

(5-6) and 2 (6-8). form bifurcation curves, starting at the point h = .u =l and ending 

on the straight line h = p,at the points~ = p1 and p = u2 respectively. 
The partitioning of the space of the parameters 

l.t > 0, h > 1 is shown in Fig. 5 (not to scale). The 

qualitative nature of the parameter-space partitioning 

differs essentially from the partitioning for the origi- 
nal system (1). In particular, the region wherein two 

limit cycles girding the phase cylinder exist is absent 

here. 

8, let us consider system (1) under the approxim- 
ations 

Fig. 5. 
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differing from (2) in that under the approximation of cos C+I a segment of the straight 
line changes into a parabola on the interval 0, ‘lsn Such a change makes it impossible 

to have a composite bifurcation with a coincidence of isoclines on the segment and ess- 

entially changes the total pattern of possible bifurcations. The equilibrium states on 

the strip-n & cp & scare: Or (- l/#, 0) a fused saddle, 0s (‘/,n, 0) a fused unstable 

node, 0, (cp,, p3) a node or a focus, 01 (~4, pa) a saddle. Here cpc is the larger root 

of the equation 

while cps either is its smaller root, if h - ~1 > 0 or is determined by the formula pre- 

sented at the beginning of Sect. 2. if A, - p < O.The quantities p4 and Ps are found 

from the equations of the corresponding isoclines. In the parameter space the points 
(I, and UC merge on the curve 4~2 - 4p3L + 1 = 0 (p_ > l/*) ; the points 01 and 
U2 merge on the straight line 3L = 1 . In the parameter plane the straight line segm- 

enth=1,0<~<~/sandabranchofthecurve4~2-4~~+1 =0, p>ij2, 
*form the boundary of the region wherein only two points (0, and 0,) exist. 

Birth of a limit cycle from a focus. The focus 03has achangeofsta- 

bility on the curve 

5s = (P,’ $ Qp’)3 = * (1 - VI - 4/.&h + 4p*) - 2h = 0 

starting at the point h. = 1, ~1 = (2 -/- rt) / (2 + 2n) and ending on the curve 

4p* - 4$ + 1 = 0, which it touches at the point B 

p = [(4 + n) / 4rt15 = pO, A = (2 + 3%) / In (4 + n) I’/* 

In passing through the curve s3 = 0 in the direction of increasing I_L the unstable 
focus becomes stable and from it appears an unstable limit cycle (for points on the curve 
Qa = 0 the first Liapunov index has the value 

Phase-space partitioning structure on the boundary curve sep- 
arating the regions of two and of four points. A phasespace with a 
saddle-node singular point, arising from the merging of points 0, and 0, corresponds 
to the points on the curve 4p2-4hp + 1 = 0 (p > ‘1s) . When p = puthe dir- 
ections along which the trajectories may enter the singular point coincide, and the 
saddle-node becomes degenerate. In passing through the value p = pothe saddle-node 
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with an unstable nodal region (p< p,,) turns into a saddle-node with a stable nodal 
region (cl > ps). For small Cc the separatrix of saddle Or winds onto the limit cycle 
girding the cylinder. For large ~1 the @-separatrix of the saddle-node has a negative 
slope everywhere (Appendix 2) and, consequently, there are no limit cycles. As p 
increases along the curve4p2 - 43Lp + 1 = 0, p > ‘I8 , the successive qualitative 
patterns are as in Fig. 1. 

Parameter-space partitioning into regions with different qual- 

itative phase-space structure. The vanishing of the saddle index 

a4 = (PO’ + Qp’)q = $g (1 + y-1 - 4kp + 4p’) - 2)L 

takes place on the curve tangent to the boundary curve at point B and having the asym- 
ptote & = 1 i- 2 / n. The saddle index is negative above the curve a4 = 0. 

Starting off from the known phase-space partitioning structures on the boundary curve, 
we can trace the change in the qualitative structures as P increases by an almost-verb- 

atim repetition of the arguments carried out in Sect. 1, Items 1.3 and 1.4 because the 
rotation of the direction field is monotonic as IJ varies, while the adoption of approxi- 
mations (3) does not essentially alter the behavior of the indices u3, aJ and u,,which 
determine the nature of the bifutcations possible in the neighborhood of a focus and of 

the separatrix loop. For the approximating system, as for the original system (1). there 
are no limit cycles when (h + I) / P < 1 and all the bifurcations are realized on the seg- 

ment b =conrt between the boundary curve and the straight line P = h -+- 1. The quali- 
tative nature of the partitionings of the parameter space and of the phase space under 

approximations (3) remains the same as for the original system (1). 

4. Let us consider system (1) under a piecewise-constant approximation for Sin ‘p 

and a saw-tooth approximation for cos cp 

sin (p-s4 = 
i 

- 1 (- 37, 0) 

i 

2x-‘cp -+ I [-- X, 01 
coscp -ca = 2x-9 +1 [O, z1 

(4? 
1 (0, ?l)’ - 

Note that these are integrable approximations. Under approximations (4) the right 

hand side of system (1) undergoes discontinuities on the lines of fusing. Besides the 

straight line 6 = &the role of the isocline of horizontal slopes is played by the polyg- 

onal line consisting of pieces of the integral lines p = (A + 1) / p == ~)s (-X, 0) , 

p = (31. - 1) / p, = p4 (0, n) and of the segments between them cp = O7 I+n; 

(A-- E I)/ < p < (h + 1)/P, on which the derivative changes sign. When (h - 1Y 

1 cL > 1 t ere are only two equilibrium states on the strip - 3t ( cp < n: 0, (-‘/,n,( 
a saddle, and 0, (l/sx, 0)an unstable node. When (h - 1) / p = 1 the isoclines 
come together and a fused composite singular point(0, l)arises, qualitatively equiva- 
lent to a degenerate saddle-node without a nodal region (Fig. 6). When (h - i) 1 p> 
< 1 < (h + 1) / u the composite singular point splits into two: 0, (0, i) a fused 

focus, and04 (~4, pr)‘a saddle. When(k + i)/ p < i the focus 0s turns into a 

stable node OI (rps, ps). The straight line J. - lo - I= 0 is the boundary between 

the regions wherein two points and four points exist. The points 01 and 0, merge on 

the straight line k = 1. 
Birth of a limit cycle from the fused focus. The fused focus isstable 

if the indices 
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1 
0 

~ J_ Fa” (0. 1) 
3 C FI”’ (0, I) 

F:“(O, 1) -yy”(u,l) 1 ’ 91 (0, I) = 2 (h - p + 1) 

have different signs. Here F, (‘9, p) = C, (cp < 0) and F, (cp, p) = C, (cp > 0) are 
the total integrals of the system [llJ. The fused focus 

has a change of stability on the curve 

X (1 $ n) P - % 
x2=7. (x-p+t)(jt-P--_) = 

0 

starting at the point p = (1 f n)-1, A= 1 and ending 

on the boundary curve at the point ,u = n-l, h = 

= (1 -I- nj n-l. As it passes through the curve as = 0 
in the direction of increasing CL the unstable fused focus 

Fig. 6. 
becomes stable and an unstable limit cycle appears from 

it (the index a4 - an analog of the first Liapunov index 

WI- is positive for the points of the bifurcation line (1 + n) p - h = 0). 
Parameter-space partitioning into regions with a different qu- 

alitative phase-space structure. The nature of the composite singular point 

and the structure of the phase-space partitioning into trajectories are preserved along 

the whole boundary curve. Infinity in unstable. The a-separatrix of saddle 0, cannot 
go into the singular point and is wound onto a stable limit cycle girding the cylinder. 
The qualitative pattern of the partitioning into trajectories on the whole boundary curve 
is equivalent to that in Fig, 1 (II-III). For (A + 1) / p < 1 the o- separatrix of saddle 

04, going into the singular point along the direction k = -&r-l - 2p, falls into the 

region of negative slopes when cp = 0 and goes off to infinity. There are no limit 

cycles. The qualitative pattern is equivalent to that in Fig. 2 (8). 
The saddle index 

54 z= (P,’ + QG’)c = 2z.4 (1 + JI - XJq 

vanishes on the straight line h = (1 + n) / n joining up with the line on which the 

focus Us changes stability, at the point of intersection with the boundary curve j. - 

- ;1 - 1 = O.The saddle index is negative above the straight line o‘I - O.Starting 

from the known structures of the phase-space partitioning on the boundary curve and in 
the region h - p -+ 1 < O:once again we can easily trace all the bifurcations and 
the change in the qualitative structures under a monotonic rotation of the vector field 
as the parameter p increases. The succession of qualitative structures, passing one 

into the other as ,u increases, is equivalent to the succession of structurally stable stru- 

ctures (2) - (8) (if 1 < h < 1 + zr-l)or of structures (2), (5), (6). (8) (if 1 -t r* < A). 
The structurally unstable structures separating the structurally stable ones listed are also 

qualitatively equivalent to the structurally unstable ones shown in Fig.2. excepting the 
structure (2-3). and to the structure (2-5) (the latter does not appear in Fig. 2) which 
should be replaced by the structure (II-III) of Fig.1 (there is a degenerate saddle-node 

instead of a saddle-node with an unstable or a stable nodal region). The qualitative 
parameter-space partitioning structure differs from the partitioning structure for the 
original system (1) only in that the bifurcation curves{ j.G}and{6.8}do not intersect 
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the boundary curve(2.5)and go off to infinity. 

6. By a small change in approximation (4) we can obtain a parameter-space partiti- 
oning pattern which coincides qualitatively with the partitioning for the original system 
(1). We consider system (1) with the approximations 

srncp -sg 3 

/ 

- i(-- Jt, - rpol 

+ I- rFo* ~017 cos (p - cs = 

f lI(Po, Jt) / 

-&~+1[-ox 

(5) 

differing from (4) in the approximation of sin cp on the interval --(po, (po. For a small 
(p. approximations (5) are close to (4). The points O1 (--l/& 0) and 0, (Ysn, 0) are 

of the same nature as under approximations (4). The points 0, and 0s merge on the 
straight line I I= 1 . The boundary curve on which the points 0, and 01 merge is a 
polygonal line composed of two links: a segment of the straight line h = (1 - 2,~~‘9,) 
p i- 1 for 0 < p < l/sn&and a segment of the halfline J, = p for /A > ‘/an(pOL. 
The nature of the fused composite singular point and the qualitative structures of the 
partitioning into trajectories vary along the boundary curve. 

If ~$0 is not large, the composite singular point Os* (cpo, (h - 1) / $on the interval 
ij ( p < r/sn~$ is made up from the saddle 0,. and the focus or node 0,. For F1. > 
> l/sn~$ the composite singular point i&., (0, 1) is a saddle.-node. For ‘p. satisfying 
the condition 1 f YC”< ‘/,I$ the boundarv point A = A* separating saddle-nodes and 
saddle-foci lies in the interval 1 i- a-l < A* < ‘/saq~,‘. If I< h < h*and. cons- 

equently, the point 034((pol (h - ‘i) / p) is a saddle-focus, the a- separatrix of saddle 
Or cannot go into a singular point and must wind around a stable limit cycle girding 

the cylinder (infinity is unstable). The qualitative pattern is equivalent to that in Fig. 1 
(II-III). For large ~1 = A the o-separatrix of the saddle-node& (0, 1) has a negative 
slope everywhere. There are no limit cycles. The qualitative pattern is equivalent to 
that in Fig. 1 (V). As l.L increases along the boundary curve all the relatively structurally 
stable and the bifurcation structures shown in Fig.1 from (II-III) to (V) are realized. 

Parameter-space partitioning into regions with a different qua- 
litative phase-space structure. The focus 0s (cp*, p*) is always stable if it 
is located to the left of the axis cp = 0 (A, < p) , and can have a change in stability if 
it is located to the right (p < h < (1 - 2nsLqo) p f 1). If q* > 0 

The focus changes stability on a curve starting at the point h .= 1, p = x [n2 - 

- (2n _ 2) cF’o]-l, and ending on the boundary curve at the point where h = ‘i -I- n-r. 
In passing through the curve os =() in the direction of increasing p the unstable focus 
becomes stable. The saddle index 
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=4 = Pip’ + Qp'h =$(I+~-nrch) 

vanishes on the straight line h = 1 + n-l, joining up with the line on which the focus 
O3 changes stability, at the point of intersection with the boundary curve h = (1 - 

- 2n-‘(p,) p. $- 1. Starting from the known structures of the phase-space partitioning 

on the boundary curve (the structures in Fig* 1 from (II-III) tc (V)) and in the region 
h - u + i < 0 (the structure in Fig. 2 (8)), we can trace all the bifurcations and the 
changes of structure under a monotonic rotation of the field as in increases. 

The qualitative parameter partitioning structure does not differ from the partitioning 

Fig. 7. 

structure of the original system (1). Struct- 

ures corresponding to the interior points of 

the parameter-space partitioning regions are 
equivalent to the structures in the partition- 

ing regions for system (1). For a system with 

approximations (5) one singular bifurcation 

arises. A singular point of the type of a 
center at the point 0, corresponds to the 

points of the curve4 = Oon the strip 0 < 

< cp < cp,.As p increases and the index us 

changes sign an unstable limit cycle appears 
from the boundary of the region filled by 

closed cwes.The partitioning in the neigh- 
borhood of the equilibrium states 0, and 
04, shown in Fig. 7, corresponds tc the 

point of the curve 4s = 0 
Note. The region of closed curves in the neighborhood of the point 0s cannot have 

a fused separatrix loop of saddle 0, as its boundary because the saddle index is nonzero 
at the saddle. The possibility of realizing the partitioning structure shown in Fig. 7 

reveals the nonanalyticity of the right-hand sides of the system under approximations(S). 

6. If cps is not small, then under approximations (S), by changing the parameter q. 
we can alter the behavior of the indices as and cr sc as to eradicate the conditions which 
have made inevitable the appearance of a region in which two limit cycles girding the 

cylinder exist. As ‘p. increases upto the value% = ‘/a~ the region in which a separa- 
trix loop arises for a positive value of the saddle index 54 vanishes in the space p > 0, 

?, > 1 . When cpo > l/ssrs (n + I)-1 the curveos = Oconsists of a piece of the hyp- 
erbola 

between the straight line h = 1 and the point i = p = l/rncpo-l at the break in the 
boundary curve. The curve u1 = Oconsists of a piece of this same hyperbola within the 
interval 1/23ccpo-1 < 3r. < 1 + x-1 (saddle 0, in the interval 0 < cp < qo) and of 

the halfline 3L = 1 + n-1, p > (n _ zq,,)-i abutting it (a saddle, in the interval 
‘pO < cp < l/sn). As ‘p. -+ II211 the boundary curve becomes a polygonal line % = 

= 1 (0 < P < I), 3~ = p (p > 1); the curve ss = 0 leaves the boundary of the 
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region i, > 1, being considered, while the curve a4 = 0 turns into a branch of the hyp- 

erbolanhp - “try. - p + 1 = (land, consequently, coincides with the curve uJ = 0, 

obtained under ap~o~matio~ (2). Tine parameter-space ~rtitioning is qualitatively 

equivalent to the partitioning under approximations (2). 

Appendix 1. The w- separatrix of the saddle-node enters the singular point along 
the direction 

x, = - 2$12 / h = 2(2 - k%) / h 

Its tangent at the singular point (TO, PO)is 

P - PO = xI(q - 00) (Cp, = arc sin h-1, p. = iJ 

The tangent intersects the P axis at a point with the ordinate 

Pr = F + 2(h2-_lf arc slnl 
h h 

If the U- separatrix of the saddle-node falls into the region above the maximum (p -+ I)/ 
/ 11 of me isocline of horizontal slopes, then obviously limit cycles girding the cylinder 
cannot exist. This is realized automatically for parameter values satisfying the inequa- 

lity (1 t_ F)/[L < Prand for which the o- separatrix lies above the tangent on the interval 
0 < up \< qO . As b --) s we have{1 + p i p -, 1 and Pr -, 3 and, consequently, the ine- 

quality indicated is fulfilled for sufficiently large 1. 

Let us show that for sufficiently large h the o separatrix does lie above the tangent. 
Consider the points of intersection of the tangent and the isocline in the direction x2. 

Eliminating p and replacing pO and x, by their values, we arrive at the equation 

The left and right-hand sides of this equation, considered as functions of cp, vanish at 

the point v = ~,and have coinciding first derivatives. The difference between the val- 

ues of the second derivatives preserves sign on the whole interval d < cp 6 v. for suffic- 

iently large h i.e., the isocIine and the tangent do not intersect. The isocline lies 
below the tangent (the quantity 0% - the root of the equation defining the ordinate of 
the point of intersection of the isocline at x, with the p axis - tends to unity as k - 

-M and, consequently, P* < Pi for large a ). Since for large h the o- separatrix close 
to the point cf - (p. lies above the tangent (this will be shown), while the isocline in the 

direction xz lies below the tangent, and since the isocline and the tangent do not int- 

ersect on the interval 0 < gj < qO. it is obvious that the u+separatrix also cannot inter- 

sect the tangent and is situated above the tangent on the whole interval 0 \< 9 < qo. 
The indicated arrangement of the separatrix and the tangent close to the point follows 

from the fact that 

and, consequently, close to the pointy, = qs on the O_ separatrix d2p J dtp2 > 0 for large 

h 

Appendix 2. The proof is similar to that presented in Appendix 1. The o -sepa- 

raaix of the saddle-node enters the singular point along the direction % = - ‘/*(4 CL’ - 
- 1) Y-l and for !r $+ 1 is located above the tangent on the interval 0 G ‘I’ 15 93 
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because here 

pfl_ ;; 
(4s - 

-= 
i)[n(4p--)-4(~+1)1 
aI [n (99 - 1) - 4) > 0, it l&j&=% 

2. The isocline in direction xa does not intersect the tangent on the interval 0 < 
< cp < ‘Ps The equation 

has no roots, this is proved analogously to Appendix 1. 
3. The ordinate of the point of intersection of the x&ocline with the p-axis is 

determined from the equation.+* (p - 1)2 = land is less than the corresponding ordinate 
p1 = (I_- % P-‘) (1 + 1/Z n) of the tangent. The limit of the value of p1 as P + CC is 

1 + 1/s n and, consequently, for large p the o separaaix falls into the region above the . 
maximum of the isocline of horizontal slopes, Pmax = (h + i)P-‘-’ = (1 + l/g&-l)y. 
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